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A Modified Finite Difference Scheme 
for the Stefan Problem 

By R. E. White 

Abstract. In this paper we describe an algorithm which can be used to approximate the 
solution to the enthalpy formulation of the Stefan problem. We allow the thermal properties 
to have a space and temperature dependence. The algorithm is not explicit in the time variable 
and, hence, the stability condition on t t is not too severe. A proof of convergence is given and 
two numerical examples are presented. 

1. Introduction. In this paper we describe an algorithm that may be used to 
approximate the solution of 

(1) E + AtA(E)/(E) = q > 0, 

where E, :(E) = (I8(Ey)), q E ?RL, L = number of nodes and A(E) = (a,1(E)) is 
an L X L matrix. The matrix is associated with an elliptic boundary value problem. 
This algebraic problem evolves from an implicit time discretization of the enthalpy 
formulation of the Stefan problem. In (1) E= enthalpy and :(E) = temperature. 
As the thermal conductivity will be temperature-dependent, the components of A( E) 
must depend on the temperature and, hence, the enthalpy. 

Originally J. Stefan [11] formulated the problem for the solidification of water. 
Since then there have been many other applications. D. R. Atthey [1] studied the 
welding problem in which an explicit time discretization is used. A stability 
condition on At was developed. N. Shamsundar and E. M. Sparrow [7] study 
thermal energy storage units which utilize phase change materials. As this process is 
over a much longer duration, they use an implicit time discretization. J. A. Wheeler 
[12] simulates the behavior of permafrost adjacent to the Alaskan pipeline. Here the 
time interval is very large as compared to the welding problem. Recently, A. D. 
Solomon [10] discussed simulations of cryosurgery. In this report it is noted that the 
thermal properties vary with temperature, position and types of tissues. An explicit 
time discretization of the enthalpy formulation is used. Also, the reader may wish 
to consult the following texts for additional applications: L. I. Rubinstein [6], 
J. Ockendon and W. Hodgkins [3], and D. G. Wilson, A. Solomon and P. T. Boggs 
[15]. 

Before describing the algorithm let us review the enthalpy formulation. In the 
classical heat equation the principal unknown is the temperature. In M. Rose [5] the 
enthalpy is the principal unknown. Consider the enthalpy function, H, and its 
"inverse", /P, as illustrated in Figure 1. In the graphs of H and /P the specific heat, c, 
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FIGURE I 

The enthalpy function 

and density, p, are assumed constant in the solid, s, and liquid, 1, phases. pL -- latent 

heat/volume. The thermal conductivity may be viewed as a function of temperature, 

/3(E), or as a function of enthalpy, E. Figure 2 illustrates the thermal conductivity K 

when it is constant in the solid and liquid phases. 

The enthalpy formulation of the Stefan problem is (2.1)-(2.4) where d/dpv 

conormal derivative. 

(2.1) E - v- K V7(x, E) = f(x, t, E) on Q X (O, T), 

(2.2) ,B(x, E) = gl(x, t) on r1 X (0, T),rl U P2= aQ, 

(2.3) (d + (x, t))3(x, E) =g2(X, t) on P2X (O, T), ri n r2 = 0, 
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FIGURE 2 
The thermal conductivity 

An implicit time discretization of (2.1) yields 

(3) E - AtV KVf(x, E) = Atf(x, E) + E, 

where the superscripts for the time have been deleted and E is the enthalpy at the 
previous time step. Equation (1) evolves from Eq. (3), when finite differences are 
used. A( E) is the matrix associated with the elliptic operator - V- K vf3( E) and the 
boundary conditions (2.2) and (2.3). 

Of course an explicit time discretization avoids the system (1). It was first used by 
A. Solomon [8] and later in [1], [10] and others. In order to avoid the stability 
criterion, G. H. Meyer [2] smoothed H(u) to H,(u) and used the implicit time 
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discretization to solve for the temperature. The smoothing of H(u) was necessary 
because he utilized the standard Gauss-Seidel iterative scheme, for which continuity 
of H,(u) is necessary, to solve Au = -H,(u) + Atf + H?(ui). N. Shamsundar and 
E. M. Sparrow [7] used a different iterative scheme to solve (1) where A(E) is 
independent of E. The convergence proof of this scheme is presented in R. E. White 
[13]. A. D. Solomon [9] modifies (3) with ,8(x, E) = /3(E) by writing V/3(E) = 
/3'(E)VyE. This generates an equation similar to (1) where A(E) is slightly different 
and /3(E) is replaced by E. The algorithm in this paper is similar to Solomon's 
algorithm. 

The advantages of the implicit time discretization are (i) it avoids the stability 
condition on At and (ii) it allows the Crank-Nicolson scheme, which is considered to 
be more accurate, to be used. Hence, the algorithm given in line (4) can be used on 
the algebraic problem (1) which results from the Crank-Nicolson scheme, and from 
problems with temperature and space dependent thermal properties. 

In Section 2 we define the algorithm and give a convergence proof. Section 3 
contains two numerical examples. 

2. The Algorithm. Consider Eq. (1). 
Definition. LetA(E) (a11(E)3#,(E,)/E,) and &T(E) I + AtA(E). 

(4) Ek+1 =_ (Ek)-q and E 0 E. 

We shall show that Ek+l E E +RL, +R - (0, x), and E is a solution to (1). 
This is done by a simple application of the contraction mapping theorem to 
GE- d-(E)-1 q. We will need the following lemma which is proved in J. M. Ortega 
and W. C. Rheinboldt [4, p. 54]. 

COMPARISON LEMMA. Let A1 = D]-B1 be an M-matrix. If D2 > 0, B2 0 0 and 
B2 < B1, then A D1 + D2- (B1 - B2) is an M-matrix and 0 < A-' < A1. 

Assumptions. 
1. /3>: +R ->+R satisfy 

(a) O < ,3j(x) ? Cx, x > O. 
(b) I3j are Lipschitz continuous on +R. 

2. A(E) = (aij(E)) and ai.: +RL -- R satisfy 
(a) 2j*_i I aij(E) I< I ailE) I for all E E +L 

(b) I a(E) I < M < x for all E E +RL. 

(c) ai1(E) < 0 for all i #1J, and aii(E) > 0. 
(d) I aij(E) - ai,(E) I < mi1IE-Ell(,,, where 2' m,j =#i mij < mii < 

m <oo. 

THEOREM. Let Ek+ I be given by (4) with q, E0 E +RL. If assumptions 1 and 2 hold, 
then there exists a 8 > 0 such that if At < 8, then Ek+l -* E E+RL and E is the 
unique solution of (1). 

Proof. The proof is an application of the contraction mapping theorem. We shall 
show that G(E) - (E)-'q, where (E) E_ I + AtA(E) is contractive. Note that 
(4) is just Ek+i = G(Ek) and E G(E) satisfies (1). First, we demonstrate that for 
small enough At, d?(E)-1 exists for all E E+RL. By assumptions (la) and (2c) the 
components of dT(E) will also satisfy (2c). By assumptions (la), (2a), and (2b) the 
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components A(E) are also uniformly bounded. Consider the following 

E PEa (E) I J E ''`Itja,,(E) IC, assumption(la), At I ai,(E 
EJ 

? itMC, assumption (2a), (2b), 

< 1 + Ata,,(E) #'F(El) 

A t I / (2 MC) for A t < 8 I / (2 MC). 

Hence, C(E) is uniformly strictly diagonally dominant and is by assumption (2c) an 
M-matrix. So, 6(E)- >, 0 exists for all E ? +RL. 

Second, we show there exists an E > 0 such that for At ? 6sl, C(E)-l >, - > 0 for 
all E E +RL. This is done by using the comparison lemma with 

6 (E) Al = (I + AtU(E)) - (At(L(E) + U(E))), D, I + AtU(E), 

BI -+At(J(E) + U(E)), D2 -(I + AtMCI) - (I + At5(E)), 

B2 B,, and D, L, U denote the diagonal, lower and upper parts of A. Hence, for 
n > O and all E E +RL 

(5) [9,(E)-',],>-[(I+AtMCI)-',]l 
minq minq, > 1+ AtMC IA-8 MC 

Third, we establish the following formula for 6T(E)-' 

(6) C(E) = E (-AtA(E))'. 
1=0 

It suffices to show jj-At.tA(E)jF)I < 2 for suitably small At. Recall the norm 

(7) IlAti(E)JI00=max At Ia,,(E)l IE J)--At 2MC, 

where (7) follows from assumptions (la), (2a) and (2b). So, let 82 17(4MC) <8. 
Then (7) and At S 82 yield 11-ztA(E)11 < 4 and 

00 

(8) Ij&(E) 1IK < : 11 - tA(E)11' - 2. 
1=0 

Also, 

(9) IIG(E)I10K = IIj?4(EI)-K1,qjj < 211-li. . 

Equations (5) and (9) state that 

(10) G: ?RL 2 q11loo] 

The fourth and final step is to show that G is contractive. By line (10) we may 
view G as G: [E, 2qlnl]L [E 21lnqjj]L; if min, E,? < e, then we may replace E by 
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The following inequalities, (12) and (13), shall be useful. By assumptions (lb) and 
(2d) there exists b. such that 

(11) a,,(E) F -a,(E ) '' ' , m,1bllIE-EllIK. 

Let b = max b1, and use assumption (2d) and Eq. (11) to obtain 

(12) IIA(E) - A(E )jj,I, < max zm, b IIE - EI11o 2mbIE -Elix. 

Also, by mathematical induction on / 

(13) IIA' - B'II I IA - B11I31(2()- 
when IIAIK,, IIBIlK < 2, and A and B are any square matrices. In order to establish 
the contractive property of G, use the geometric series representation given in (6) 
and 

00 

(14) fIG(E) - G(E)11 = || (- tA( EE)) - W( 
1=0 1=0 00 

00 

I 1(-A tA (E ))- -(-l'tA (E ) lol7l 
1=0 

J Izt(E) - At()IIo( 31(2) )ii1riiK by (13) 

? At2mbBiijqjj0cjE - EIIO0 by (12). 

The constant B = 3 21= I(?)' is finite by comparison with the integral 
J 3x(2)xl dx < xo. Let 83 l/(4mbBIjjqjj) and 8 min(82, 83). By Eq. (14) if 
l\t s 8, then IIG(E) - G(E)I11o < IIE - E II. Hence, for A\t ? 8 the assumptions of 
the contractive mapping theorem hold and the sequence given by (4) for any 
E? E ?RL converges to a unique solution in ?RL of (1). 

Remarks. 1. In the theorem we require r, E ?RL. This imposes conditions on l\t, 
Ax and the data. However, since E is large, e.g. see the first example in Section 3, 

this is not severe. 
2. In numerical experiments the constraints on l\t that are given in the proof of 

the theorem are not necessary for convergence. Apparently, less severe constraints 
may be imposed on l\t. 

3. If l\t is too large, uniqueness may fail, but the existence may continue to hold. 
Consider the simple example for L = 1, /3(E) = E, q = l\t and 

3 F 3 E? 1/4, 

A(E)=Il E-1, 1/4<E?l/2, 

01 1/2<E. 

If l\t = 1, then any element of [1/4, 1/2] will be a solution to 

E + l\tA(E)E = 7i. 

If At < 1, then the only positive solution is E = A\t/(l + 3l\t) < . 
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4. In problems in which the algebraic problem (1) results from a one space 
variable Stefan problem A(E) will be tridiagonal and, hence, 6i(E) will be tridiago- 
nal. d(E)-1 is easily computed directly by the tridiagonal (or Thomas) algorithm. 
In case (1) results from a two or three space variable Stefan problem, d((E)-1'q may 
be computed by an alternating direction method. Also, other iterative methods such 
as the Gauss-Seidel method may be used, as d((E) is an M-matrix, to compute 

(e(E)-',q. 
5. If q = q(E) = (7q1(E1)), then an iterative scheme Ek+? = 6(Ek)l q(Ek) can 

be defined. If the q_, satisfy certain conditions, e.g. Lipschitz continuous and 
uniformly bounded, and l\t is suitably small (see Eqs. (6)-(9)), then Ek?l - E and 
E is a solution of E + l\tA(E)/3(E) = q(E). 

6. Work on comparison with other methods and their rates of convergence is in 
progress. Because of the lack of smoothness of /3(E) at the solid-liquid interface, 
convergence is slow near this region. 

3. Examples. The first example illustrates H(u), 83(u), A(E) for algorithm (4). It 
models the freezing of water starting from 310K and going down to 73K, the 
temperature of liquid nitrogen. Thus the thermal properties vary with temperature. 
A comparison with the explicit time discretization used in [10] is given. The second 
example has a thermal conductivity which is temperature and space dependent. The 
computations agree with those of two other algorithms given in R. E. White [14]. 

Example 1. The following data for water was taken from [10] and the units are cgs. 
Assume temperature = u < 373. 

p(u) = {920, u ? 273 = uf, 
1,000, u > 273. 

c(u) = .007,16u + .138, u ? 273, 
4.18668, u > 273. 

K(u) = {.002,24 + .000,005,95(273 - u) 1156, u ? 273, 
.000,101,7 + .000,001,695u, u > 273. 

u 

H(u = p(-)c(u-) du- H(u) J (U 

- { 3.293,6u2 + 126.96u, u u 273, 
4186.8(u - 273) + 613,858.79, u > 273, 

p,L = 333,730, 

[-19.274 + V371.477 + .30362E, E 280,128.79, 
18(E) = 273, 280,128.79 < E < 613,858.79, 

L.000,238,86E + 126.411, 613,858.79 E F. 

[.002,24 + .000,005,95(273 - 3( E))E, F < 280,128.79, 

K(E) - J -.000,000,005,022,77(E - 280,128.79) + .002,4, 
280 128.79 < E < 613,858.79, 

.000, 10 1,7 + .000,001,695,8(E), 613,858.79 E F. 
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We considered the problem (15.1)-(15.4) 

(15.1) Et - (K(E)I8(E)x)X = 0, 

(15.2) /(E(0, t)) = 73, 

(15.3) 1(E(.05, t))x = 0, 

(15.4) E(x,0) = H(3 10). 

We used Ax = .05/20 and At = .5 for 0 s t s 6.0, and At = 6.0 for t > 6.0. The 
matrix 69(E) is an M-matrix and tridiagonal. The computation 6( (E)-1 q is easily 
done by the tridiagonal (Thomas) algorithm. Convergence is given when IE"' - 

E,k 1< 1000, for all i, and was usually obtained in 5 to 8 iterations. The results are 
given in Table 1 where they are compared with those in [10]. In [10] an explicit 
scheme was used i.e., 

(E k)E - 
k 

p(Ek) At -V K(Ek)V18(Ek) =0 

and p does not appear in /3. Note the savings in computation time. 

TABLE 1: 13(E(x, 600)) 

x Algorithm (4) | Explicit Ax = .0025 Explicit Ax = .00125 
x Algorithm (4) (At = .25 ) At = .0625) 

0. 73.00 73.00 73.00 
0.05 94.17 93.79 93.74 

.010 116.9 116.04 115.95 

.015 141.5 139.91 139.84 

.020 168.2 165.55 165.59 

.025 197.8 193.12 193.36 

.030 230.8 222.84 223.25 

.035 267.0 255.32 255.56 

.040 292.3 280.88 285.37 

.045 304.5 301.92 303.01 

.050 307.2 306.94 307.01 

Example 2. Let K be given by Figure 3 and /3(E) be given by Figure 1 with 

PSCS = Uf = p,C, = 1 and p,L = 2 = H. Consider the one space variable version of 

(2.1)-(2.4). 

(15.1) Et-- (Kf(E)x)x = A, (x, t) E (0, 1) X (0, T), 

(15.2) -K13(E)x = B(TB-/9(E)), x = 0, 

(15.3) f3(E)x = 0, x = 1, 

(15.4) E(x,O) = .000,001. 
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In the computations that are given by the graphs in Figure 4 we used the following 
constants: A - 10.0, DK = 1.0, AK = 1.0, H = 2.0, B = 2.0, TB = -1.0, DX = .05 
and T = .5. The algorithm (4) was considered to have converged, at each time step 
when I Ek - E1k I< ER for all i 1,.. , 21. ER = .001 was used. The tridiagonal 
algorithm was used to compute 6(Ek)i q whereqi = DT*A + Ei. 

K(x,E) - eAK*x K(E) (a) 
K(E) 

3 + DK 

2 + DK 

2 - 
? 1 + H) 

1 1 - ? 

1 1 + H E 

K(x,u) e- AK*XK(u) (b) 
K( u) 

3 + DK 

2 + DK 

2 1 

1 U 

FIGURE 3 
Thermal conductivity for Example 2 

When DT = .0125, convergence was not obtained for k < 50. When DT .00125 
was used, convergence was usually obtained within 2 to 9 iterations. The computa- 
tions agree within 1% of the computations obtained by two other algorithms in R. E. 
White [14]. The reader should note that this DT is above the stability condition, that 
is required by an explicit time discretization, 

max K DT 1 
min pc DX*DX 2' 

i.e., DT < .000,312,5. 
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FIGURE 4 

Graph of E(x, t) in Example 2 
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